Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen.
نویسندگان
چکیده
The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 microM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 microM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 microM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 microM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.
منابع مشابه
Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6.
We performed comprehensive kinetic, inhibition, and correlation analyses in human liver microsomes and experiments in expressed human cytochromes P450 (P450s) to identify primary and secondary metabolic routes of tamoxifen (TAM) and the P450s catalyzing these reactions at therapeutically relevant concentrations. N-Desmethyl-TAM formation catalyzed by CYP3A4/5 was quantitatively the major primar...
متن کاملAssessment of the impact of CYP3A polymorphisms on the formation of α-hydroxytamoxifen and N-desmethyltamoxifen in human liver microsomes.
Tamoxifen, an antiestrogen used in the prevention and treatment of breast cancer, is extensively metabolized by cytochrome P450 enzymes. Its biotransformation to α-hydroxytamoxifen (α-OHT), which may be genotoxic, and to N-desmethyltamoxifen (N-DMT), which is partially hydroxylated to 4-hydroxy-N-DMT (endoxifen), a potent antiestrogen, is mediated by CYP3A enzymes. However, the potential contri...
متن کاملGenetic Testing for Tamoxifen Treatment
Background/Overview TAMOXIFEN METABOLISM Tamoxifen undergoes extensive primary and secondary metabolism, and plasma concentrations of tamoxifen and its metabolites vary widely. The metabolite 4-hydroxytamoxifen (4-OH tamoxifen) has demonstrated a 100-fold greater affinity for the estrogen receptor and 30to 100-fold greater potency in suppressing estrogen-dependent cell proliferation in vitro co...
متن کاملRe: Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine.
BACKGROUND Tamoxifen, a selective estrogen receptor modulator (SERM), is converted to 4-hydroxy-tamoxifen and other active metabolites by cytochrome P450 (CYP) enzymes. Selective serotonin reuptake inhibitors (SSRIs), which are often prescribed to alleviate tamoxifen-associated hot flashes, can inhibit CYPs. In a prospective clinical trial, we tested the effects of coadministration of tamoxifen...
متن کاملActive Tamoxifen Metabolite Plasma Concentrations After Coadministration of Tamoxifen and the Selective Serotonin Reuptake Inhibitor Paroxetine
Background: Tamoxifen, a selective estrogen receptor modulator (SERM), is converted to 4-hydroxy-tamoxifen and other active metabolites by cytochrome P450 (CYP) enzymes. Selective serotonin reuptake inhibitors (SSRIs), which are often prescribed to alleviate tamoxifen-associated hot flashes, can inhibit CYPs. In a prospective clinical trial, we tested the effects of coadministration of tamoxife...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 30 8 شماره
صفحات -
تاریخ انتشار 2002